NASA ‘hits jackpot’ in mission to bring back a sample from an asteroid as Bennu contains water

NASA’s OSIRIS-REx spacecraft has found water locked deep inside the asteroid it hopes to bring a sample from back to Earth.  

The craft finally arrived at asteroid Bennu last week, more than two years after blasting off from Cape Canaveral Air Force Station.

Now, NASA says it ‘made the right decision’ choosing its target.

 

The animation above shows our closest look yet at the space rock, showing Bennu in one full rotation from about distance 50 miles away (80 km). It was captured over the course of four hours and 18 minutes

WHAT DID NASA FIND? 

Data obtained from the spacecraft’s two spectrometers, the OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) and the OSIRIS-REx Thermal Emission Spectrometer (OTES), reveal the presence of molecules that contain oxygen and hydrogen atoms bonded together, known as ‘hydroxyls.’ 

The team suspects that these hydroxyl groups exist globally across the asteroid in water-bearing clay minerals, meaning that at some point, Bennu’s rocky material interacted with water. 

While Bennu itself is too small to have ever hosted liquid water, the finding does indicate that liquid water was present at some time on Bennu’s parent body, a much larger asteroid.

 

‘Recently analyzed data from NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) mission has revealed water locked inside the clays that make up its scientific target, the asteroid Bennu,’ NASA said. 

‘The presence of hydrated minerals across the asteroid confirms that Bennu, a remnant from early in the formation of the solar system, is an excellent specimen for the OSIRIS-REx mission to study the composition of primitive volatiles and organics,’ said Amy Simon, OVIRS deputy instrument scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. 

‘When samples of this material are returned by the mission to Earth in 2023, scientists will receive a treasure trove of new information about the history and evolution of our solar system.

While Bennu itself is too small to have ever hosted liquid water, the finding does indicate that liquid water was present at some time on Bennu’s parent body, a much larger asteroid. 

During the mission’s approach phase, between mid-August and early December, the spacecraft traveled 1.4 million miles (2.2 million km) on its journey from Earth to arrive at a location 12 miles (19 km) from Bennu on Dec. 3. 

During this time, the science team on Earth aimed three of the spacecraft’s instruments towards Bennu and began making the mission’s first scientific observations of the asteroid. 

OSIRIS-REx is NASA’s first asteroid sample return mission.

Data obtained from the spacecraft’s two spectrometers, the OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) and the OSIRIS-REx Thermal Emission Spectrometer (OTES), reveal the presence of molecules that contain oxygen and hydrogen atoms bonded together, known as ‘hydroxyls.’ 

The team suspects that these hydroxyl groups exist globally across the asteroid in water-bearing clay minerals, meaning that at some point, Bennu’s rocky material interacted with water. 

NASA’s OSIRIS-REx spacecraft has finally arrived at asteroid Bennu more than two years after blasting off from Cape Canaveral Air Force Station.The animation above shows the craft’s approach to the object, beginning August 17 when it was over 1,300,000 miles from Bennu, to November 27, when it was just 40 miles away

While Bennu itself is too small to have ever hosted liquid water, the finding does indicate that liquid water was present at some time on Bennu’s parent body, a much larger asteroid.

One outlier from the predicted shape model is the size of the large boulder near Bennu’s south pole. 

The ground-based shape model calculated this boulder to be at least 33 feet (10 meters) in height. 

Preliminary calculations from OCAMS observations show that the boulder is closer to 164 feet (50 meters) in height, with a width of approximately 180 feet (55 meters).

Bennu’s surface material is a mix of very rocky, boulder-filled regions and a few relatively smooth regions that lack boulders. 

However, the quantity of boulders on the surface is higher than expected. 

OSIRIS-REx will spend the next year in orbit around its target before dropping down briefly so it can get close enough to scoop up a sample of dirt and rock from the surface. 

HOW WILL NASA’S OSIRIS-REX MISSION TO TAKE SAMPLES FROM AN ASTEROID WORK?

Osiris-Rex is the first US mission designed to return a piece of an asteroid to Earth.  

Scientists say the ancient asteroid could hold clues to the origin of life. 

It’s believed to have formed 4.5 billion years ago, a remnant of the solar system’s building blocks.

The spacecraft launched on September 8, 2016 at 19:05 EST aboard an Atlas V rocket.

After a careful survey of Bennu to characterise the asteroid and locate the most promising sample sites, Osiris-Rex will collect between 2 and 70 ounces (about 60 to 2,000 grams) of surface material with its robotic arm and return the sample to Earth via a detachable capsule in 2023.

To capture samples on the surface, the craft will hover over a specific area and ‘will be sent down at a very slow and gently’ 4 inches (10 cm) per second. 

The spacecraft will also carry a laser altimeter, a suite of cameras provided by the University of Arizona, spectrometers and lidar, which is similar to radar, using light instead of radio waves to measure distance. 

‘Our initial data show that the team picked the right asteroid as the target of the OSIRIS-REx mission. We have not discovered any insurmountable issues at Bennu so far,’ said Dante Lauretta, OSIRIS-REx principal investigator at the University of Arizona, Tucson. 

‘The spacecraft is healthy and the science instruments are working better than required. It is time now for our adventure to begin.’    

‘We have arrived,’ technicians announced, spurring high-fives and clapping around the control room.

Just days ago, Osiris-Rex flexed its mechanical arm through a full range of motion for the first time in space ahead of reaching Bennu; eventually, this instrument will be used to pluck a regolith sample from the surface to bring back home.

The craft has now traveled more than a billion miles since launching in September 2016. 

Osiris-Rex’ ultimate goal is to bring back a regolith sample of at least 2.1 ounces. It will first survey the asteroid’s surface for a year, before selecting a safe and ‘scientifically interesting’ location to scoop up some rocks.

If all goes well, the craft will bring the sample back to Earth in September 2023. 

Osiris-Rex has been sending back photos throughout the course of its journey, revealing glimpses at its then-faraway target and even our own planet from millions of miles way.

In August, the craft snapped its first image of asteroid Bennu.

While the blurry snapshot might not look like much, its first look was the closest we’ve come to the space rock yet, at 1.4 million miles away.

The craft also captured a look at Earth and moon in their ‘orbital dance’ back in January.

Asteroid Bennu, which Osiris-Rex will spend the next few years studying, is said to be a carbon-rich hunk of rock that might contain organic materials or molecular precursors to life.

 NASA aired live coverage of its arrival starting at 11:45 a.m. ET, shortly before the spacecraft began the 20-second burn that put it on the right trajectory around the asteroid. Artist's impression

 NASA aired live coverage of its arrival starting at 11:45 a.m. ET, shortly before the spacecraft began the 20-second burn that put it on the right trajectory around the asteroid. Artist’s impression

Osiris-Rex captured a 'super-resolution' view of asteroid Bennu on october 29, 2018. The photo was created using eight images obtained by the spacecraft from a distance of about 205 miles (330 kilometers)

Osiris-Rex captured a ‘super-resolution’ view (left) of asteroid Bennu on October 29, 2018. The photo was created using eight images obtained by the spacecraft from a distance of about 205 miles (330 kilometers)

‘Analyzing a sample from Bennu will help planetary scientists better understand the role asteroids may have played in delivering life-forming compounds to Earth,’ NASA explains. 

‘We know from having studied Bennu through Earth- and space-based telescopes that it is a carbonaceous, or carbon-rich, asteroid. Carbon is the hinge upon which organic molecules hang. 

‘Bennu is likely rich in organic molecules, which are made of chains of carbon bonded with atoms of oxygen, hydrogen, and other elements in a chemical recipe that makes all known living things. 

‘Besides carbon, Bennu also might have another component important to life: water, which is trapped in the minerals that make up the asteroid.’

The Large Binocular Telescope Observatory located on Mount Graham in Arizona spotted Osiris-Rex (red) in September 2017, roughly a year after it launched

This September 11, 2016 photo shows a Centaur upper stage lifted at Space Launch Complex 41 on Florida's Cape Canaveral Air Force Station where it was attached to the United Launch Alliance Atlas V rocket first stage booster, carrying OSIRIS-REx 

This September 11, 2016 photo shows a Centaur upper stage lifted at Space Launch Complex 41 on Florida’s Cape Canaveral Air Force Station where it was attached to the United Launch Alliance Atlas V rocket first stage booster, carrying OSIRIS-REx 

Once Osiris is ready to collect a sample, it will drop down closer to Bennu and hover over the surface like a hummingbird, with only its mechanical arm getting close enough to touch the asteroid.

The Touch-and-Go Sample Acquisition Mechanism (TAGSAM) will suck up the regolith, kicked up by its nitrogen gas thrusters, and hopefully collect enough to study back at home.

Scientists estimate the asteroid formed roughly 4.5 billion years ago.

‘Bennu is a leftover fragment from the tumultuous formation of the solar system,’ NASA says.

‘Some of the mineral fragments inside Bennu could be older than the solar system. These microscopic grains of dust could be the same ones that spewed from dying stars and eventually coalesced to make the Sun and its planets nearly 4.6 billion years ago.’

 

Read more at DailyMail.co.uk